Black Belt_/)'

Decouple Components
With LCE

Loosely Coupled Events (LCE) simplifies code maintenance by letting subscribers
and publishers interact through .NET.

Technology Toolbox ; Dccoupling subscribers from publishers yields

(a1 VB.NET

o C#

(1 SQL Server 2000
(O ASP.NET

a XML

1 VB6

easier long—term maintenance, faster time to
market, and more robust applications. Of course,
doing this efficiently requires that you be able to add
and remove subscribers without changing the
publisher’s code.
I'll explain the publish/subscribe model in detail,
then show you how to decouple your own apps in
NET using Loosely Coupled Events (LCE). LCE lets

by Juval Lowy

subscribers subscribe to types of events, so when
publishers change, subscriber code doesn’t, and vice
versa. LCE also lets you decouple the subscriber/
publisher lifeline, so subscribers don’t need to be
running to receive the event. Instead of delivering an
event directly, you deliver it to .NET, which delivers
it to the subscribers.

An object provides services to clients in a compo-
nent-oriented program by letting clients invoke meth-

Fires event

Component
(publisher)

Create

O ISink >

T
I
I
I
I
|
I
I
|
I
I

v

T

Event class

i
|
| Please publish

Fires event

T Register transient

subscription 3
Transient
subscriber %

o 4> I1Sink

Fires event

Look for a subscription

s , . Component
@ % persistent
e e SUbSEriptionlist

Pertinent
subscriber

B N
Create

ISink

Figure 1 Use .NET as the Middleman for Events. Loosely Coupled Events (LCE) lets .NET mediate the publish/subscribe
processes, simplifying code maintenance greatly and sometimes even improving performance, because it lets you man-
age how events fire. A publisher creates the event class @ and fires an event on it @. The .NET implementation of the
event class goes through the list of subscribers for that event class @ and publishes the events to them (calling the
appropriate sink method on the subscribers). .NET maintains a subscription list for every event class. Subscriptions can be
transient (referring to existing objects) or persistent (the type of a class). For persistence subscriptions, .NET creates an
object of every type stored @ and publishes to it @. After publishing to a persistent subscriber, the object is discarded and
garbage-collected. For transient subscribers, .NET simply publishes the event to those objects @.

64

VISUAL STUDIO MAGAZINE

JUNE 2002 www.visualstudiomagazine.com

ods and set properties on the object. But what about the common
situation where one or more clients needs to be notified about an
object-side event? Most apps require some form of event subscrip-
tion and publishing to handle this. You call the object publishing the
event the source or publisher, and the party interested in the event a
sink or subscriber.

Event notification takes place through publishers calling meth-
ods on subscribers. You can call publishing the event firing the
event. .NET offers native support for events, relying on delegates
(type-safe method references). NET event support eases the task of
managing events compared to COM connection points, and it
bypasses the need to write code for managing subscriber lists.

However, .NET delegate-based events suffer from some draw-
backs. A subscriber (or client adding a subscription) must duplicate
the code for adding the subscription for every publisher object from
which it wants to receive events. You can’t subscribe to a type of event
and have the event delivered to the subscriber, regardless of publisher.
Subscribers can’t filter events that are fired. For example, subscribers
can’t say, “Notify me about the event only if a certain condition is
met.” Subscribers must contact the publisher object in order to
subscribe to it. This introduces coupling between clients and objects
and between individual clients. Publishers and subscribers have
coupled lifetimes—both must be running at the same time. Subscrib-
ers can’tsay to NET, “Ifan object fires this particular event, create an
instance of me and let me handle it.” Finally, you must set up
connections programmatically; you can’t do it administratively.

Manage Events Loosely

You can overcome the drawbacks associated with delegate-based
events in .NET by decoupling with LCE instead. You get LCE
support from the System.EnterpriseServices namespace. .NET En-
terprise Services actually form a thin wrapper around COM+
component services. LCE moves the logic for publishing and
subscribing to events outside the scope of the components involved.
Subscribers wanting to receive events register with .NET, then
manage the subscribe/unsubscribe process through .NET, not the
object. Similarly, publishers fire events at NET rather than the
subscribed clients.

LCE gives you a layer of indirection that decouples the sub-
scriber and publisher in your system. No longer do your clients
know anything about publishers’ identities. And LCE differs from
basic .NET delegate-based eventsin that it requires you to factor the
event handling methods to an interface rather then mere public
methods on the subscriber, as delegates require. This interface is
called a sink interface.

A publisher object fires an event at NET (to be delivered to the
subscribers) using an event class, derived from Serviced Component
and decorated with the EventClass attribute. The event class must

Resources

~ «COM and .NET Component Services by Juval Lowy [0'Reilly &
Associates, 2001, ISBN: 0596001037]

* Middle Tier, Tap Into Transient Subscriptions, by Jeff Prosisé
[Visual C++ Developers Journal March 2000]

« “Using COM+ Events”: http;//msdn.microsoft.com/library/
default.asp?url=/library/en-us/dncomser/html/
complus_events.asp . ~

VISUAL STUDIO MAGAZINE + JUNE 2002 + www.visualstudiomagazine.com

Welcome to the COM New VSLIb’SC'ipUOn Wizard

Select Subscription Method(s).
Select the subscription method or methods.

| ispose
W |ManagedObject
! GetObject|dentity
GetSerializedBuffer
@ System EnterpriseServices_|ServicedComponentinfo
.. GetComponentinfo

scription Wizard simplifies implementing the publish/subscribe pro-
cesses. It displays all the interfaces your component supports, in-
cluding non-sink ones. It lets you subscribe to events published to all
the sink interfaces your class supports, to a particular interface, or
even to a particular method.

implement the sink interfaces used to publish the events. In reality,
you never use this implementation because .NET synthesizes the
actual implementation. You only use the event class to list the sink
interfaces. This lets NET synthesize their implementation.

Suppose a publishing object wants to fire an event at all the
subscribers supporting the sink interface IMySink. These subscrib-
ers must both implement the interface and subscribe to the event
class MyEventClass, defined in C# like this:

public interface IMySink

{
void OnEventl();
void OnEvent2();

}&

[EventClass]

public class MyEventClass
ServicedComponent, IMySink

public void OnEventl()
{}
public void OnEvent2()
{}

To publish the event, the publisher first creates the event class,
then fires the event at its interface’s method (see Figure 1):

IMySink sink;
sink = new MyEventClass();
sink.OnEventl();

The .NET implementation of the event class goes through the
list of subscribers for that event class and publishes the events to
them (calling the appropriate sink method on the subscribers).
.NET maintains a list of subscriptions for every event class. Sub-

65

Black Beltj

scriptions can be references to existing ob-
jects (called transient subscriptions) or sim-
ply the type of a class (called persistent
subscriptions). In the case of a persistence
subscription, .NET creates an object of ev-
ery type stored and publishes to it. After
publishing to a persistent subscriber, NET
discards the objectand it’s garbage-collected.
With transient subscribers, .NET simply
publishes the event to those objects.

Note that firing the event is synchronous
and serial by default—that is, subscribers
are called by default one after the other
(serial), and control returns to the publish-
ing client only after all the subscribers are
notified (synchronous).

Another important distinction between
LCE and delegate-based events is that if one
of the subscribers throws an exception, only
that subscriber is affected, and .NET con-
tinues to publish to the rest of the subscrib-
ers. With delegate-based events, if a sub-
scriber throws an exception, the publisher
must handle it or be terminated, and in any
case won’t be able to continue publishing.

Fine-Tune Delivery

However, NET does provide you with some
means of fine-tuning the delivery. You can
minimize blocking time by configuring your
event class to use multiple threads for pub-
lishing, using threads from the thread pool.
You do this with the EventClass attribute’s
FirelnParallel property:

[EventClass(FireInParallel = true)]
public class MyEventClass :
ServicedComponent, IMySink

public void OnEventl(){)
public void OnEvent2(){}

FirelnParallel defaults to false. Parallel
publishing is subject to pool limitations, so
consider firing in parallel as an optimization
technique only; avoid relying on it in your
design. For example, don’t count on all sub-
scribers getting the event at the same time.

AsImentioned eatlier, thereare two types
of subscribers. The firstis an existing instance
of a class supporting the sink interface. You
can add that instance at run time to the list of
subscribers of a particular event class. This is
a transient subscription, which exists as long
as thesubscriber is running. [twon’t persist or
survive a system reboot or crash.

When a particular instance of a class
subscribes to an event class, only that in-

66

stance receives events published. Other in-
stances receive the events only if they sub-
scribe themselves transiently.

You can only add a transient subscrip-
tion programmatically, using NET Enter-
prise Services Catalog interfaces and objects.
You receive no administrative support
through the .NET Component Services
Explorer. Any .NET component (not just
serviced components) that implements the
sink interface can be a transient subscriber:

public class
MyTransientSubscriber:
IMySink

ol)

Use the second type of subscription—a
persistentsubscription—when youwant. NET
to create an object of a particular class type
when an event is published, let it handle the
event, then discard it. You can use only .NET
classes derived from ServicedComponent as
persistent subscribers:

public class MyPersistentSubscriber
: ServicedComponent, IMySink

Lol

Persistent subscriptions, as the name im-
plies, persist in the .NET Catalog, and sur-
vive a system reboot or a crash.

Add Persistence

The process of adding a persistent subscrip-
tion starts with registering the subscribing
component with the Catalog (see Resources
for more information on .NET Enterprise
Services). Every component in the Compo-
nent Services Explorer has a Subscription
folder, which contains the persistent sub-
scriptions the product administrator or de-
veloper has set up. Every subscription repre-
sents an event class (or a list of event classes).
You instantiate the component to receive
events whenever any publisher uses these
event classes.

Next, expand the Subscription folder,
right-click on it, and select New from the
popup context menu. This invokes the New
Subscription Wizard (see Figure 2). The
wizard displays all the interfaces your com-
ponent supports, including non-sink ones.
.NET doesn’t knowwhether they’re sinks or
not; only you do.

You can set up subscriptions at the inter-
face or method level. Using the method level
means that NET delivers the event to your
component only when publishers publish

VISUAL STUDIO MAGAZINE

using that method. If you want to subscribe
to another method, you must add a new
subscription. Using the interface level means
that any event targeting any method on that
interface should be delivered to your compo-
nent. These two options give you the ability
to subscribe to only a subset of the events
publishers can publish, or to all of them.

After you select interfaces and methods,
the wizard lists all installed event classes
supporting the interfaces you've selected.
You can choose a particular event class orall
of them. The last step in the wizard lets you
name the subscription and enable it.

You can enable or disable a subscription
easily after creating it. Highlight it in the
Subscriptions folder, display its Properties
page, select the Options tab, and enable or
disable the subscription.

Delegates are great, but you need LCE in
your toolkit too. Once you master persistent
subscriptions, you can move on to transient
ones, discussed in the online sidebar, “Add
a'Transient Subscription” (see the Go Online
box for details). Either way, you won’t really
start exploiting publishing and subscribing
with .NET until you master LCE. vsm

Juval Lowy is a software ar-
chitect, conference speaker,
and principal of IDesign, a
consulting and training com-
pany focused on .NET design
and migration. This article is
based on his book, COMand.NET Component
Services (O'Reilly & Associates). Juval is an
officer of the .NET California Bay Area User
Group. Reach him at www.idesign.net.

(o

Use these Locator+ codes at www.
visualstudiomagazine.com to go di-
rectly to these related resources.

VS0206 Download all the code for this
issue of VSM.

VS0206BB Download the code for this
article separately. This article’s code
includes the .NET LCE-Persistent class
library with an event class and persis-
tent subscriber, plus a Windows Forms
test client to publish the event, making
NET instantiate the subscriber and de-
liverthe eventtoit. The file also includes
a sidebar and listings showing how to
code transient subscriptions, a transient
subscription helper class, and a test
transient subscriber and publisher.

VS0206BB_T Read this article online.

GoyOnliné‘ k

JUNE 2002 + www.visualstudiomagazine.com

